A NOTE ON MONOTONE BASES

BY

L.E. DOR

ABSTRACT

In a finite-dimensional Banach space with a monotone basis, the range of a norm-1 projection has a monotone basis.

Pełczyński [2] proved that for any finite-dimensional Banach space E and any $\lambda > 1$ there is a finite-dimensional Banach space F with a basis of constant $\leq \lambda$ and a projection Q of norm 1 in F such that E is isometric to QF. He also showed that we can get $\lambda = 1$ if F is not required to be finite-dimensional, and asked whether $\lambda = 1$ can always be attained with finite-dimensional F. The following result answers this question in the negative.

THEOREM. Let F be a finite-dimensional Banach space with a monotone basis, and let Q be a norm-1 projection in F. Then $E \equiv QF$ has a monotone basis.

For proof we shall need the following version of the ergodic theorem (cf. [1], VIII 5.2-3);

LEMMA. Let X be a Banach space, and T a finite rank operator in X with $||T|| \leq 1$. Then there is a norm-1 projection of X onto the finite-dimensional subspace $\{x \in X; Tx = x\}$.

PROOF OF THE THEOREM. By assumption, $I_F = \sum_{i=1} A_i$ where the A_i are rank 1 projections, and $\|\sum_{i=1}^{k} A_i\| = 1$, $(k = 1, 2, \dots, n)$. Let *m* be the last index for which $R \equiv QA_{m|E} \neq 0$, and let $T = I_E - R$. Then $\|T\| \leq \|Q \cdot \sum_{i=1}^{m-1} A_i\| \leq 1$. Since *R* is a rank 1 operator, $E_1 \equiv \{x \in E; Tx = x\} = \ker(R)$ is of codimension 1 in *E*. By the Lemma, there is a norm-1 projection P_1 of *E* onto E_1 . Now, P_1Q is a norm-1 projection of *F* onto E_1 , and so repeating the procedure $d = \dim(E)$

Received November 2, 1972

times, we get norm-1 projections onto E_2 , E_3 ,, $E_d = 0$, where $E \supset E_1 \supset$, ..., $E_2 \supset \cdots \supset E_d$ have dimensions decreasing by 1. This shows that E has a monotone basis (cf e.g. [3], p. 249).

REMARK. The existence of finite-dimensional Banach spaces without monotone bases is well known (cf. [3] Ch.I, 1).

References

1. N. Dunford, and J. Schwartz, Linear Operators, Part I, J. Wiley, New York, 1967.

2. A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace pf a Banach space with a basis, Studia Math. 40 (1971), 239–243.

3. I. Singer, Bases in Banach spaces, I, Springer, 1970.

DEPARTMENT OF MATHEMATICAL SCIENCES

TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL